

System Forecasting for Energy Planning at MISO

ACES 2019 MISO Summit Indianapolis, IN August 29, 2019

Characteristics

- Independent
- Transparent
- Consistent
- Using public information to the extent possible
- Not an attempt to replicate or replace the Module E forecasts

Process Flow Chart

State Models

- We built econometric models of annual energy sales for each MISO state
 - New versions created every two years
 - Drivers vary from state to state, but generally include an economic measure, electricity and natural gas prices, and weather
- These are used to create 20-year forecasts of annual sales for each state
 - prior to utility energy efficiency programs

Allocation Models

- State energy forecasts are allocated to the Local Resource Zones (or to non-MISO loads) based on historical data
- Allocation factors are held constant throughout the forecast unless we have a reason to expect them to change
 - e.g., The economy in St. Louis may be projected to grow differently than the rest of Missouri in LRZ 5

Average % of State Sales (2009-2016)

LRZ	AR	IA	IL	IN+KY	LA	MI	MN	МО	MS	ND+M T	SD	тх	WI
1		1.8%	0.0002%			0.1%	97.0%			36.4%	24.1%		16.8%
2						4.9%							83.2%
3		91.1 %	1.4%				1.8%				1.8%		
4			33.1%										
5								48.9%					
6				49.6%									
7						91.0%							
8	71.1%							0.0%				0.0%	
9					92.2%							5.6%	
10									45.1%				
Non- MISO	28.9%	7.1%	65.5%	50.4%	7.8%	4.0%	1.3%	51.0%	54.9%	63.6%	74.1%	94.4%	0.0%

LRZ Peak Demands

- LRZ level peak demands are projected using models that estimate the relationship between demand and average load under typical weather conditions for peak loads
 - polynomial relationship with temperature and average of temperature over previous hours as variables

LRZ Forecasts

- Previously, we provided annual energy and summer and winter peak demand projections
 - we now produce monthly energy and peak forecasts
- We also incorporate utility EE at the LRZ level, based on information provided by MISO staff

Coincidence Factors

- LRZ forecasts are not coincident with the MISO system peak
 - they may not occur at the same time
- Coincidence factors are calculated based on historical observations

$$CF = \frac{LRZ \ demand \ at \ time \ of \ MISO \ peak}{LRZ \ peak \ demand}$$

System Level Forecasts

- MISO system level energy forecasts are the simple sum of the LRZ energy forecasts
- System level peak demand forecasts are the sum of the LRZ peak demands times the coincidence factor

$$Peak_{MISO} = \sum (Peak_{LRZ} * CF_{LRZ})$$

Data Sources (from 2018 report)

Data	Content	Historical Data	Data Used in	
Electricity sales	GWhs, annual retail electricity sales by state, 1990-	Source EIA	Projection N/A	
Electricity prices	2016 Cents/KWh, 2009\$, 1990-2016	EIA	SUFG projection based on EIA data	
Natural gas prices	\$/Mcf (thousand cubic feet), 2009\$, 1990-2016	EIA	SUFG projection based on EIA data	
Real personal income	Thousands, 2009\$, 1990-2016	BEA	IHS Markit	
Population	Number of people, population by state, 1990-2016	Census Bureau	IHS Markit	
Manufacturing & non- manufacturing employment	Number of jobs, 1990-2016	BLS	IHS Markit	
Non-farm employment	Number of jobs, 1990-2016	BLS	IHS Markit	
Gross state product	Millions, 2009\$, 1990-2016	IHS Markit	IHS Markit	
Cooling degree days (CDD)	Summations of monthly cooling degree days, base 65° F, 1970-2017	NOAA	NOAA 30-year normal	
Heating degree days (HDD)	Summations of monthly heating degree days, base 65° F, 1970-2017	NOAA	NOAA 30-year normal	
Hourly Temperature	Historical hourly temperature of selected weather stations, 1997-2017	MRCC	Normal peak temperatures	

Further Information

State Utility Forecasting Group
765-494-4223
www.purdue.edu/discoverypark/SUFG/

Douglas Gotham 765-494-0851 gotham@purdue.edu